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Politécnico Nacional, Apartado Postal 14-740, México Distrito Federal, Mexico
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Abstract
We studied with linear stability analysis the onset of parametric waves on the surface of a
smectic A liquid crystal. For thin Sm-A layers under an applied static magnetic field there are
subharmonic–harmonic branches of surface waves at low modulating frequency of the driving
acceleration and long wavelength. A semi-infinite Sm-A medium poses a dispersion relation
with similar trends as for Newtonian liquids. When the external forcing is negligible there are
two damped surface waves excited by thermal fluctuation of the interface, whereas in the
absence of a magnetic field the dominant modes are of harmonic type for typical material
parameters.

1. Introduction

Faraday surface waves are generated on the surface of a liquid
layer when it is subjected to vertical vibrational motion [1].
For a given frequency of the movement, once a critical driving
acceleration is reached the surface develops an instability
that leads to a series of stationary surface wave modes
that form a rich variety of definite regular and crystalline
geometric patterns [2–5]. The first theoretical analysis of
these waves was performed by Benjamin and Ursell in the
so-called linear stability regime [6]. They used an inviscid
ideal fluid model and determined the forcing amplitude and
wavenumber at onset as a function of the external frequency
of excitation. The further extension of this theory to include
Newtonian liquids [7] (for which the main waves are of
subharmonic type occurring at half of the driving frequency)
found excellent agreement for those properties with their
corresponding study from the experimental counterpart [8].
Also, the same theoretical approach has been used to explain
the Faraday surface wave as observed in viscoelastic fluids
like semi-dilute polymeric [9–12], gels [13, 14] and wormlike
micelle solutions [15] and ferrofluids [16, 17]. Yet, the
validity of this linear theory to describe Faraday waves
was recently demonstrated through comprehensive three-
dimensional computer simulations on viscous fluids [18].
On the other hand, it has been determined experimentally
that, due to interactions among the different wave modes,
there appears a diversity of spatially symmetrical surface
patterns which correspond to the nonlinear regime. These
findings have motivated many experimental [2–5, 19] and

theoretical studies [20–23] to characterize and understand
these nonlinear waves in systems with lateral sizes comparable
to the pattern’s wavelength and also on model systems with
infinite lateral extension. In particular, the weakly nonlinear
theories advanced in [20, 21] for weakly viscous fluids have
allowed explicit calculations of the effects of nonlinearities
and of finite fluid depth [22] on pattern selection. However,
to our knowledge similar studies for liquid crystals have not
yet been undertaken. In contrast to the other complex fluids
mentioned above, a comprehensive quantitative theoretical
linear analysis of the dependence of the forcing acceleration
and wavenumber on the strength of the external excitation
frequency is still lacking for the Faraday instability in smectic
A (Sm-A) liquid crystals. Therefore, in the present paper we
report on our results of the adaptation of the linear theory
approach to Faraday surface modes in limits appropriate to
smectic A liquids under realistic fluid material properties.

We considered first a Sm-A layer under a constant
horizontal magnetic field applied in the direction of the
wavevector that orients the molecules in a stack of lamellar
layers perpendicular to the air–liquid interface. In the most
important region of linear analysis of low wavenumber and
low frequency, we determined the dispersion relation and
instability boundary (acceleration versus wavenumber curve)
of surface waves in finite-thickness layers. We found that
there are alternating subharmonic–harmonic unstable wave
‘tongues’ in the plot of the oscillation amplitude against
wavenumber and for fixed frequency. In the important limiting
case of this theory for unforced waves we provide the detailed
form of the thermal surface mode power spectrum for semi-
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Figure 1. Smectic A liquid crystal under an applied static magnetic
field H parallel to the wavevector k and to the Ox axis. The Sm-A
lamellar layers are perpendicular to the free interface.

infinite unbounded Sm-A liquid crystals, and its dependence
on the relevant fluid properties. Such spectral intensities of the
surface displacement fluctuations are feasible to be measured
with present-day surface light scattering techniques [24, 25]. In
a second model system the liquid crystal layers are parallel to
the vapor–fluid interface in the absence of a magnetic field. The
predicted Faraday instability was found to exhibit enhanced
wave responses with similar trends as in the first case above
when the mode frequency is just a few Hertz and for very thin
slabs of fluid.

2. First model: smectic A layers perpendicular to the
surface in the presence of a horizontal magnetic field
parallel to the wavevector

We consider a system made of vapor in contact with the fluid
smectic layer of finite thickness L and infinite lateral extension.
The material layer is subjected to a vertical sinusoidal vibration
acceleration g(t) = g − a cos (wt), where a is the driving
acceleration and w the frequency of oscillation, with g being
the gravitational acceleration in a frame of reference co-
moving with the container. ζ is the deformation shape of
the interface due to normal displacements from its equilibrium
configuration. An applied external horizontal magnetic field H
orients the smectic A molecules in the x-axis direction while
the stack of smectic layers remains perpendicular to the liquid–
vapor interface, figure 1.

Due to symmetry in the xy plane of the spatial coordinates
x and y we assume the generated surface wave propagates with
wavevector k in the x direction, and therefore independently of
the coordinate y. We characterize the elasticity of the interface
by a surface tension γ . A splay module K determines the
curvature distortion of surface deformation. B is a module of
the layer’s compression and χa is the magnetic susceptibility of
the smectic molecules that are oriented by the applied magnetic
field [26]. Thus, the elastic free energy of surface distortion is
defined as [26, 27]

F = 1
2

∫
d3r {B(∂xu)2 + K (∂2

y u + ∂2
z u)2

+ χa H 2[(∂yu)2 + (∂zu)2]}. (1)

Here u is the displacement along the x axis perpendicular to
the smectic layers and ∂β := ∂/∂β , β = x, y, z.

The equation of motion giving the velocity about the basic
state of rest, and in the moving frame, is

ρ
∂v
∂ t

= ∇ · σ + hêz, (2)

where σ = −pI + σ ′ + σ r − ρg(t)êz êz , with (I)αβ = 1 if
α = β and 0 otherwise. The molecular field

h = B∂2
x u − K (∂4

z u +2∂4
yzu +∂4

y u)+χa H 2(∂2
y u +∂2

z u). (3)

The stress tensor

σ ′ = η2[∇v + (∇v)T] + (η3 − η2)[∇(vx êx) + ∂x vêx

+ (∇(vx êx) + ∂x vêx)
T] + η′∂xvx êx êx , (4)

where the viscosity η′ = η1+η2−4η3−2η5+η4 [27, 28], with
êα being a unit vector along the α = z, x axis, respectively.
The deformation field u satisfies the bulk equation u̇ − vx =
λph, where λp is the permeation length. p is the hydrostatic
fluid pressure and ρ is the density.

For frequencies much less than the first sound frequencies
of the solvent, the mass conservation equation in the
incompressible limit is

∇ · v = 0. (5)

The equation of motion (2) is subjected to the boundary
conditions at the material–vapor interface z = 0 where both
the normal and shear stress must be independently in balance:

σzz = 0, (6)

σxz = 0, (7)

σyz = 0. (8)

Using the free energy (1), the normal and tangential restoring
forces are given by

σ r
zz = fz = K ∂x(∂

2
y + ∂2

z )u + γ (∂2
x + ∂2

y)ζ(x), (9)

where we included in the last term the Laplace force due to the
surface tension:

σ r
xz = fx = K ∂z(∂

2
y + ∂2

z )u − χa H 2∂zu. (10)

σ r
yz = 0. (11)

Linear stability of the flat interface requires that the
surface elevation ζ be related to the velocity field vz through
the kinematic surface condition:

∂tζ = vz, at z = 0, (12)

and additionally is valid in the approximate relationship:

∂u

∂z
= ∂ζ

∂x
, (13)

while it also satisfies the surface permeation equation:

u̇ − vx = 1

η3κs
fx (14)
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with κ−1
s ≈ 100 Å a molecular length for the surface

permeation [26]. For smectic A the surface equilibrium force
at z = 0 [29] is

K ∂x(∂
2
x u + ∂2

z u) = 0. (15)

At the bottom of the container (z = −L) the no-slip boundary
conditions

v = 0, (16)

and
∂zvz = 0, (17)

apply. Taking the double curl of equation (2) yields

−[∂t − ν2∇2]∇2vz = (ν3 − ν2)∇2[∂x∂zvx − ∂2
x vz]

+ ν ′∂2
x ∂x∂zvx + ∂x∂z

h

ρ
. (18)

Now, the divergence ∇⊥ := (∂x , ∂y) of equation (2) and σ ′
lead to

∇2
⊥ p = [ρ∂t − η2∇2 − (η3 − η2)∂

2
x ]∂zvz

+ (η3 − η2)[∇2
⊥ + ∇2]∂xvx + η′∂2

x ∂xvx + ∂x h, (19)

whereas balance of normal forces at the interface given by
equation (6) yields an equation for the pressure, which together
with (19) yields

[∂t − ν2∇2 − (ν3 − ν2)∂
2
x − 2ν2∇2

⊥]∂zvz

= −(ν3 − ν2)[∇2
⊥ + ∇2]∂xvx − ν ′∂2

x ∂xvx

− K

ρ
∂x∇′2

⊥∇2
⊥u + g(t)∇2

⊥ζ − γ

ρ
∇4

⊥ζ − ∂x h

ρ
, (20)

with ν j = η j/ρ, j = 2, 3.
On the other hand, conditions (7) and (8) can be expressed

as a single relationship:

η3[∇2
⊥ − ∂2

z ]vz = [K∇′2
⊥ − χa H 2]∂x∂zu, (21)

with ∇′2⊥ := ∂2
y + ∂2

z .
Thus, the Fourier transform of equations (18), (20), (21)

and (3) provide respectively new forms for the above boundary
conditions at z = 0:

[∂t − ν2(∂
2
z − k2)](∂2

z − k2)ṽz

= (ν3 − ν2)(−∂2
z + k2)[ik∂z ṽx + k2ṽz]

+ ν ′ik∂z ṽx − ik∂z
h̃

ρ
, (22)

[∂t + (ν3 + 2ν2)k
2 − ν2∂

2
z ]∂z ṽz

= −(ν3 − ν2)[−2ik3 + ik∂2
z ]ṽx + ν ′ik3ṽx

+ iK

ρ
k3∂2

z ũ − g(t)k2ζ̃ − γ

ρ
k4ζ̃ − ikh̃

ρ
, (23)

η3[−k2 − ∂2
z ]ṽz = [K ∂2

z − χa H 2]ik∂zũ = 0, (24)

h̃ = −Bk2ũ − K ∂4
z ũ + χa H 2∂2

z ũ, (25)

with i = √−1 and ũ = ∫
d2r e−ik·ru. In what follows we

shall consider similarly the Fourier transform of the remaining
conditions (12)–(17).

2.1. Floquet theory analysis

Since g(t) is a periodic function with period 2π/w, the
solutions to equations (5), (12), (22) and (23) can be expressed
according to Floquet’s theory as superpositions of time-
periodic functions [7, 13]:

ζ̃ (t) =
∞∑

n=−∞
ζ̃neμn t , (26)

with μn(w) = ε + i(n + α)w, where ε and α are real-
valued [7]. The surface wave will respond harmonically (H )
to the driving frequency when α = 0 and subharmonically (S)
when α = 1/2. Such an expansion is also performed on ṽz

and ṽx . Due to the reality condition on the above-mentioned
displacement field, it turns out that ζ̃n = ζ̃ ∗

n with α = 0, and
ζ̃n = ζ̃ ∗

n−1 for α = 1/2. We now proceed to determine the
coefficients ζ̃n .

Using the deformation field

ũ(z, t) =
∞∑

n=−∞
ũn(z)e

μn t , (27)

and u̇−ṽx = λph̃ in equation (22) we get a differential equation
for the components of ũn(z):

[∂8
z − an∂

6
z + bn∂

4
z − cn∂

2
z + k2dn]ũn(z) = 0, (28)

where ∂k
z , is the kth derivative with respect to z. The complex

coefficients

an = μn

ν3
+ k2

(
2 + ν ′

ν3

)
+ 1

ξ 2
H

+ κ2,

bn = μn

ν3ξ
2
H

+ k2

(
μn

ν3
+ 2

ξ 2
H

+ 1

λ2
+ ν ′

ν3ξ
2
H

)

+ k4 + μn

λp K
+ κ2

ξ 2
H

,

cn = μ2
n

λp Kν3
+ k2

(
μn

λ2ν3
+ μn

ξ 2
H ν3

+ 2μn

λp K

+ ν ′μn

ν3λp K
+ κ2

λ2

)
+ k4

(
1

ξ 2
H

+ 2

λ2
+ ν ′

ν3λ2

)
,

dn = μ2
n

λp Kν3
+ k2

(
μn

λ2ν3
+ μn

λp K

)
+ k4

λ2
,

(29)

where ξH = √
K/χa/H , λ = √

K/B, λp = 1/(ρν3κ
2) and

ν ′ = η′/ρ. Solutions to equation (28) are of the general form
ũn(z) ∼ eθ(k)z . Thus, an algebraic equation is obtained when
the change of variable S = θ2 is made:

S4 − an S3 + bn S2 − cn S + k2dn = 0, (30)

where all modes Sj , j = 1, . . . , 4 can be calculated
numerically from equation (30). However, the approximated
analytical solution mode S1 ≈ k2dn/cn was found to be valid

3
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at long-wavelength λk 
 1 and low-frequency w < B/η3,
w < k

√
B/ρ limits [30, 31].

The most general solution can be written as

ũn(z) =
4∑

j=1

[A j e
z
√

S j + B j e
−z

√
S j ]. (31)

It is now possible to define both ṽz and ṽx in terms of
A j , B j with help of the expressions u̇ − ṽx = λph̃
and (5). Equation (12) gives the displacement field ζ̃ as a
function of the constants A j , B j , j = 1, . . . , 4, which in
turn can be determined from the kinematic relationship and
boundary conditions, equations (12)–(17) and equations (22)–
(25). A numerical estimation of their magnitudes leads to the
inequality |A1|, |B1| � |A j |, |B j |, j = 2, 3, 4 in a wide
range of parameter values defining different model smectic A
systems [26, 30]. For instance, when k ∼ 104 m−1, K ∼
10−11–10−7 N, B ∼ 106–103 N m−2, w ∼ 1–102 Hz, layer
thickness L = 10−2–10−3 m, λp = 10−14–10−17 m4 N−1 s−1,
ρ = 103 kg m−3, η3 = 1 P, η′ = η2 = η3, χa =
10−8 kg m−1 s−2 G−2, H = 3000 G, γ = 0.033 N m−1.

It should be noted that the explicit values of the constants
A1, B1 can be written as a function of the modes ζ̃n.

Thus, we determined these two constants from the above
boundary conditions. By means of equations (5), (12), (13)
and (16) which together constitute a single boundary condition
on A1 and B1, and with the help of equation (26), we found
their values as a function of ζ̃n only (see equations (70)
and (71) in the appendix). Therefore, using this solution in
equation (23) we get the recursion relationship for all the
interface displacement components ζ̃n :

Mn ζ̃n = a(ζ̃n−1 + ζ̃n+1), (32)

Mn = 2

k

{
w2

0 +
{ [Bk2 + K S2

1 + K k2S1 + χa H 2S1]
ρ

+ [μn + λp Bk2 + λp(K S2
1 − χa H 2S1)]

× [μn + k2(3ν3 + ν ′) − ν3S1]
}

(A1 + B1)

iζ̃n

}

≡ 2

k
DL

n (k, μn = iw), (33)

with

w2
0 = gk + γ k3

ρ
. (34)

A1 = ζ̃n ieL
√

S1

2k
√

S1 Rn
(−1 + coth(L

√
S1))

× {μn S1 + k2(−1 + eL
√

S1)Rn},

B1 = ζ̃ni

(−1 + eL
√

S1)k
√

S1 Rn

× {μn S1eL
√

S1 − k2(−1 + eL
√

S1)Rn},
Rn = λp B K 2 + λp K S2

1 − λpχa H 2S1 + μn .

(35)

M∞
n = 2

k

{
w2

0 + k√
S1

[Bk2 + K S2
1 + K k2S1 + χa H 2S1]

ρ

+ k√
S1

μn[μn + k2(3ν3 + ν ′) − ν3S1]
}

≡ 2

k
D∞

n (k, μn = iw), (36)

where we used λp ≈ 0.

2.2. Linear stability analysis

In the presence of the external acceleration a = 0 there
is coupling among different temporal modes. Therefore we
resort to a numerical solution of equation (32) for a finite
value n = N to yield the stability analysis of the free
surface. Thus, equation (32) reduces to an eigenvalue problem
with eigenvalue a and complex eigenvectors determined by
�ζ [7, 13]. For that purpose it is convenient to rewrite
equation (32) for the harmonic and subharmonic cases
separately as

M�ζ = aUH�ζ , and M�ζ = aUS�ζ , (37)

where M, UH and US are real matrices of order 2(N + 1) ×
2(N + 1) and �ζ is a vector of order 2(N + 1):

�ζ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ̃ r
0

ζ̃ i
0

ζ̃ r
1

ζ̃ i
1

ζ̃ r
2

ζ̃ i
2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

Here the complex numbers Mn = M r
n + iMi

n , ζ̃n = ζ̃ r
n + iζ̃ i

n ,
n = 0, 1, . . . , N + 1:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M r
0 −Mi

0 0 0 0 0 . . .

Mi
0 M r

0 0 0 0 0 . . .

0 0 M r
1 −Mi

1 0 0 . . .

0 0 Mi
1 M r

1 0 0 . . .

0 0 0 0 M r
2 −Mi

2 . . .

0 0 0 0 Mi
2 M r

2 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(39)
and

UH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 0 0 0 . . .

0 0 0 0 0 0 . . .

1 0 0 0 1 0 . . .

0 1 0 0 0 1 . . .

0 0 1 0 0 0 . . .

0 0 0 1 0 0 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

US =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 . . .

0 −1 0 1 0 0 . . .

1 0 0 0 1 0 . . .

0 1 0 0 0 1 . . .

0 0 1 0 0 0 . . .

0 0 0 1 0 0 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)
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Figure 2. Neutral stability curves of Faraday waves for the smectic A
liquid crystal under an applied static magnetic field H = 3000 G
parallel to the wavevector k and to the equilibrium vapor–liquid
interface. Magnetic susceptibility of the molecules
χa = 10−8 kg m−1 s−2 G−2. Figure 2(a) for modulation frequency
w = 6π s−1, whereas 2(b) with w = 30π s−1. Other system’s
parameters are given in section 2.2 and were kept constant and equal
in the two cases considered. The Sm-A lamellar layers are
perpendicular to the free interface.

Solution of this eigenvalue problem for ε = 0 yields
the neutral stability curve a(k, w) for a given wavenumber k
corresponding to fixed material parameters of the liquid crystal.
We follow the approach given by Kumar [7] and Kumar [13].

In figure 2 are given the calculated wave zones against
wavenumber for two frequencies: figure 2(a) with w = 6π s−1

and figure 2(b) for w = 30π s−1. The material parameters
defining the model system are; K = 10−11 N, B = 106 N m−2,
layer thickness L = 10−4 m, λp = 10−14 m4 N−1 s−1,
ρ = 103 kg m−3, η3 = 1 P, η2 = η3, η′ = 10−2η3, χa =
10−8 kg m−1 s−2 G−2, H = 3000 G and γ = 0.033 N m−1.

Figure 2(a) depicts first the subharmonic waves from low
wavenumbers up to k ∼ 40 m−1 (dashed line), which is then
followed by the region of harmonic waves (black filled circles).
These very well-defined alternating regions of Faraday waves
are obtained mainly at a low ratio of driving to gravitational
accelerations a/g, and from low up to k = 100 m−1. At
this low frequency, w = 6π s−1, the minimum amplitude
acceleration is a = 0. That is, modes of different branches
can be excited for infinitesimal values of a in much the same
way as happens on an ideal inviscid fluid [6, 7]. Figure 2(b)
corresponds to the same system of figure 2(a) where, however,
we have only increased the frequency. It is noted that
the alternating pattern of subharmonic–harmonic waves of

Figure 3. Calculated dispersion relation for a semi-infinite Sm-A
liquid crystal in the long wavelength and low frequency limits. Same
fluid parameters as in figure 2. The inset shows the critical amplitude
of oscillation versus frequency.

figure 2(a) shifts to higher values of k and is characterized
by a meaningful wider range of nonzero a/g values. From
the numerical solution of equation (32) for the vapor–liquid
semi-infinite medium, equation (36), we obtained the critical
wavelength λc and amplitude of oscillation ac as a function of
frequency, which are depicted in figure 3. They are of the same
order of magnitude as compared to a glycerin–water mixture in
air [32]. This could be useful to estimate the elastic constants
and viscosity of an Sm-A liquid from their fit to experimental
data.

2.3. Thermal waves

We note that, for a = 0 and n = 0, DL
n (k, μn = iw) = 0 is

the dispersion relation of a finite-thickness layer experiencing
thermal surface waves, whereas its semi-infinite medium
version L → ∞ is given by D∞

n=0(k, μn = iw) = 0. Such
relationships have not been reported before in the literature.
Surface light scattering measures the power spectrum S(k, w)

of the fluctuating interface of a semi-infinite medium. It can be
recast into an equation for the local surface displacement ζ̃ by
means of the fluctuation–dissipation theorem [25]:

S(k, w) = 〈|ζ̃ (k, w)|2〉 = kBT

πw
Im[χ(k, w)], (42)

where

ζ(r, t) =
∫

Area
d2r′

∫
Pext(r − r′, t − τ )χ(r′, τ ) dτ, (43)

and Pext is a weakly applied external pressure on the interface.
For L → ∞ the dissipative function χ = 2/ρD∞

n=0. We found
two viscous damped modes, see figure 4.

In the region of small frequency λp Bk2 
 w 
 ν3k2 

k
√

B/ρ and λk 
 1 the mode
√

S1 ≈ κ−1k2
√

w
2λp Bk2 [1 +

λp Bk2/2w + i(1 − λp Bk2/2w)], it yields from equation (42)

S(k, w) = kBT

2wπ

κ−1k2
√

2w
λp Bk2

Den1
(44)

5



J. Phys.: Condens. Matter 22 (2010) 035106 M Hernández-Contreras

Figure 4. Power spectrum of damped thermal waves on the free
surface of a semi-infinite medium of Sm-A liquid crystal. Same
parameters as in figure 2. (a) Plot of equation (44) and (b) from
equation (46).

Den1 = Bk2 + γ κ−1k4

(
1 + λp Bk2

2w

)√
2w

λp Bk2
. (45)

Finally, we determined another region where thermal
waves can be found: w 
 λp Bk2 
 ν3k2 
 k

√
B/ρ, where

the mode
√

S1 ≈ κ−1k2(1 + iw/2λp Bk2), with μn = iw and

S(k, w) = kBT

2πλp Bk2

[Bk2 − κ−1k(K k4 − χa H 2k2)]
Den2

, (46)

Den2 = (γ k3 + Bk2(κ−1k)−1)2 +
(

γ k3w

2λp Bk2

)2

×
[

2(γ k3 + Bk2(κ−1k)−1) + γ k3w2

(λp Bk2)2

]

× κ−1k(K k4 − χa H 2k2)

+
(

1 + w2

(λp Bk2)2

)
(κ−1k)2(K k4 − χa H 2k2)2. (47)

3. Second model: smectic A layers parallel to the
surface with no magnetic field

Our second model system consists of a smectic A liquid crystal
of thickness L that is formed by a lamellar stack of equally
spaced parallel layers with deformation field u perpendicular
to the liquid–vapor interface and oriented along the z axis,
figure 5.

The bulk elastic free energy of smectic A is [14, 27]

F = 1
2

∫
d3r {B(∂zu)2 + K (∂2

x u + ∂2
y u)2}. (48)

Note that in this case the stress tensor is defined by

σ ′ = η2[∇v + (∇v)T] + (η3 − η2)[∇(vz êz) + ∂zvêz

+ (∇(vz êz) + ∂zvêz)
T] + η′∂zvz êz êz, (49)

whereas the displacement u satisfies

∂t u = vz + λph, (50)

gravity 

g(t)

modulation

0

Z

X

L

Figure 5. Smectic A configuration and coordinate system used.

with

h = B∂2
z u − K∇2

⊥∇2
⊥u. (51)

The general elastic forces on the interface become
now [27, 30, 31]

σ r
zz = fz = B∂zu + γ (∂2

x + ∂2
y)ζ(x), (52)

where the second term takes into account the capillary force
component

σ r
xz = fx = −K ∂x∇2

⊥u, (53)

σ r
yz = fy = −K ∂y∇2

⊥u, (54)

where ∇2
⊥ := ∂2

x + ∂2
y .

Using similar methods of section 2 we obtain the
dynamical equations for the velocity component vz :

[∂t − ν3∇2]∇2vz = ν ′∇⊥∂2
z vz + ∇2

⊥
h

ρ
, (55)

[∂t − (3ν3 + ν ′)∇2
⊥ − ν3∂

2
z ]∂zvz

= B

ρ
∇2

⊥∂zu + g(t)∇2
⊥ζ − γ

ρ
∇2

⊥∇2
⊥ζ, (56)

η3[∇2
⊥ − ∂2

z ]vz = K∇2
⊥∇2

⊥u, (57)

and their Fourier transforms at z = 0 are

(∂t − ν3[∂2
z − k2])(∂2

z − k2)ṽz = −ν ′k2∂2
z ṽz − k2 h̃

ρ
, (58)

[∂t + (3ν3 + ν ′)k2 − ν3∂
2
z ]∂z ṽz

= − B

ρ
k2∂zũ −

[
g(t) + γ

ρ
k2

]
k2ζ̃ , (59)

η3[k2 + ∂2
z ]ṽz = −K k4ũ, (60)

h = B∂2
z ũ − K k4ũ. (61)

The displacement field ũn fulfills the differential equation

[∂6
z − a′

n∂
4
z + b′

n∂
2
z − c′

n]ũn(z) = 0, (62)

6



J. Phys.: Condens. Matter 22 (2010) 035106 M Hernández-Contreras

where

a′
n = k2

[
μn

λp Bk2

(
1 + λp B

ν3

)
+ λ2k2 + 2 + ν ′

ν3

]
,

b′
n = k4

[(
μn

λp Bk2
+ λ2k2

)(
μn

ν3k2
+ 2 + ν ′

ν3

)

+ μn

ν3k2
+ 1

ρν3λpk2
+ 1

]
,

c′
n = k6

[(
μn

λp Bk2
+ λ2k2

)(
μn

ν3k2
+ 1

)
+ λ2

ρν3λp

]
.

(63)

Now the assumption ũn(z) ∼ eθ(k)z and S = θ2 lead to

S3 − a′
n S2 + b′

n S − c′
n = 0. (64)

Since ũn has the general form of expression (31), and on using
(50) it results in Floquet’s form of ṽz = ∑

n w̃n(z)eμn t :

w̃n(z) =
3∑

j=1

(μn − λp[BSj − K k4])

× [A j e
z
√

S j + B j e
−z

√
S j ]. (65)

The solution modes Sj of (64) can be determined fully
numerically. We found nevertheless that they can be
approximated at low frequency and long wavelength [30, 34].
In this case

S1 = k2
B
η3

(λk)2 + μn + μ2
n

ν3k2

B
η3

+ μn(2 + ν′
ν3

) + μ2
n

ν3k2

, (66)

S2,3 = 1
2

[
a′

n ∓
√

(a′
n)

2 − 4b′
n

]
. (67)

However, the boundary conditions imply that |A1|, |B1| �
|A j |, |B j |, j = 2, 3 and the smallness of λp ≈ 0 allows us
to derive a simple expression for the components ζ̃n of a finite-
thickness Sm-A layer in terms of only one mode, S1. Thus

Mn ζ̃n = a(ζ̃n−1 + ζ̃n+1), (68)

where now Mn is defined as

Mn = 2

k

{
w2

0 +
(

Bk
√

S1

ρ
+

√
S1

k
μn[μn + k2(3ν3 + ν ′)

− ν3S1]
)

coth(L
√

S1)

}
, (69)

w2
0 = gk+γ k3/ρ. Our expression of equation (69) with n = 0

coincides with the dispersion relation of thermal waves on Sm-
A found by other authors [30, 33, 34].

Figure 6 is the plot of the ratio of the external driving
to constant gravity acceleration a/g versus wavenumber k.
The material parameters of this system are; K = 10−10 N,
B = 104 N m−2. Layer thicknesses L = 0.05, 0.05,
0.03 m, frequencies w = 6π s−1, 18π s−1 and 18π s−1

corresponding to figures 6(a), (b) and (c), respectively. λp =
10−14 m4 N−1 s−1, ρ = 103 kg m−3, η3 = 1 P, η2 = η3,
η′ = 10−2η3 and γ = 0.033 N m−1.

From figure 6(a) we can observe that for increasing
values of wavenumber the first instability is subharmonic

Figure 6. Neutral stability curves of Faraday waves given as the ratio
a/g against wavenumber k. There is no applied magnetic field. The
subharmonic branch is depicted with star symbol ∗ and harmonic
branch with ◦. Fluid parameters are given in section 3. The Sm-A
lamellar layers are parallel to the liquid–vapor interface.

(star symbols) then followed by a harmonic one (white circle
symbols). This pattern of instabilities is well defined only in
a small window of wavenumbers, 0 < k < 30 m−1. For
low frequency w = 6π s−1, it is possible to find harmonic
waves that are favored first, with a lower critical acceleration of
ac/g ≈ 7.31 for k ≈ 12.7 m−1, than subharmonic ones which
have ac/g ≈ 16 for any fixed k. (The critical amplitude ac is
the minimum of a(k, w) for the lowest branch [32].) Further
increase of the frequency up to w = 18π s−1 as shown in
figure 6(b) reduces the strength of ac and a of both branches,
making them converge roughly to the same magnitude a/g ≈ 7
but with different wavenumbers. The layer thickness effect was
determined from figure 6(b) corresponding to L = 0.05 m
and its comparison with figure 6(c) where we used a smaller
thickness L = 0.03 m and the same frequency w = 18π s−1

while the other parameters remained fixed. In this case, the
minimum critical acceleration corresponds to the harmonic

7
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branch, whereas the subharmonic–harmonic neutral stability
curve regions grow, becoming better defined compared to those
from the larger thickness system of figure 6(b).

4. Conclusions

We found that Faraday waves develop in thin (0.1 mm,
0.05 m) smectic A liquid crystal layers at low frequencies
of external driving acceleration and in the long wavelength
limit. For Sm-A under an external magnetic field, and for
typical material parameters, there are alternating subharmonic–
harmonic branches with almost the same vanishing critical
excitation acceleration as occurs in ideal inviscid fluids. An
increase of the modulating frequency makes the subharmonic
waves to preempt the harmonic ones with a lower onset
nonzero acceleration. In the case of an Sm-A semi-infinite
medium, the dispersion relation exhibits similar behavior to
Newtonian liquids, showing the same order of magnitude for
the amplitude of oscillation and wavenumber. For zero forcing
acceleration we provide the power spectrum of damped surface
waves excited by thermal fluctuations. However, in the case
of Sm-A at zero magnetic field, harmonic waves can be the
dominant instability having lower critical acceleration than
subharmonic waves mainly for low frequencies and thicker
layers of Sm-A than when the magnetic field is present.
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Appendix

From equations (12) and (16) we get

{μn S1 − k2[μn + λp Bk2 + λp(K S2
1 − χa H 2S1)]

× (1 − e−L
√

S1)}A1 + {−μn S1 + k2[μn + λp Bk2

+ λp(K S2
1 − χa H 2S1)](1 − eL

√
S1)}B1 = 0, (70)

and from equation (13) it results in

{μn + λp Bk2 + λp(K S2
1 − χa H 2S1)}

× (1 − e−L
√

S1)√
S1

A1 − {μn + λp Bk2

+ λp(K S2
1 − χa H 2S1)} (1 − eL

√
S1)√

S1
B1 = iμn ζ̃n

k
. (71)
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